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COMMENT 

Periodic solutions of the DABO equation as a sum of 
repeated solitons 
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t Faculty of Engineering, University of Tel-Aviv, Ramat-Aviv, 69978, Israel 
$ Ocean Engineering Laboratory, Department of Mechanical and Environmental Engineer- 
ing, University of California, Santa Barbara, CA 93106, USA 

Received 1 September 1988, in final form 2 November 1988 

Abstract. It is shown that the periodic solution of the non-linear DABO equation can be 
written as an infinite sum of an equally spaced row of indentical Lorentzian solitons. This 
may be considered as a generalisation of a similar result which has been found for the 
KdV equation and is related to the clean-interaction properties of colliding solitons under 
non-linear coupling. 

A remarkable property of the Korteweg-de Vries (Kdv) equation is that its periodic 
solutions (cnoidal waves) may be represented as exact sums of equally spaced identical 
solitons. Such a representation was first obtained by Toda (1975) as a by-product of 
a more general discussion of the ‘Toda lattice’ by using an infinite-product method. 
The importance of this result and its relevance to the ‘clean-interaction’ and the 
‘non-destructive’ properties of colliding solitons of the Kdv equation under non-linear 
coupling, was recently rediscovered by Boyd (1984) and Whitham (1984). Boyd used 
the Poisson summation formula and Whitham employed the method of partial fractions 
to prove that cnoidal waves may indeed be represented as an infinite sum of the 
spatially repeated ‘sech2’ type solitary wave solutions of the Kdv equation. The purpose 
of this comment is to show that the same property also holds for the Davis-Acrivos- 
Benjamin-Ono ( DABO) equation. Some general properties of this equation, obtained 
by using an inverse scattering transform scheme, are discussed in a paper by Santini 
et a1 (1984). The same paper also includes a comprehensive list of references on this 
important integrodiff erential equation. 

The one-dimensional DABO equation 

Pt -t aPPx - P H ( / J x x )  = 0 

where H denotes the Hilbert transform defined by 

and a, p are positive constants, was first given by Davis and Acrivos (1967) and by 
Benjamin (1967); both of these investigations concerned two-dimensional internal 
waves propagating under the free surface of an infinitely deep fluid. This non-linear 
integrodifferential equation (1) was later investigated by Ono (1975) in the same 
context, who derived four conservation laws for (1) and applied them to estimate 
soliton evolutions from a given initial disturbance. It was shown analytically by 
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Benjamin, and numerically by Davis and Acrivos, that the DABO equation has a simple 
steady solitary wave solution in the form of a Lorentzian (algebraic) shape, unlike the 
hyperbolic secant function which corresponds to the Kdv equation. The elevation of 
the solitary wave in a reference frame moving with the wave, 5 = x - Vt, ( V> 0) is 
given by 

d 5 ) =  - a A 2 / ( t 2 + A 2 )  (3) 

a = 4 V / a  I i = p / V .  (4) 

where 

In addition to the solitary wave, (3),  the DABO equation also yields a periodic wavetrain 
solution with period 2L (Benjamin 1967, Ono 1975): 

which is a two-parameter solution of (1) with 

6 = ?rp/ VL p2+S2= 1. (6) 
For L+ CO (infinite period) the periodic solution (5) reduces to the solitary wave (3) 
and the case L +  4 7 ~ p / a a  corresponds to infinitesimal waves. 

It is rather surprising to note that the periodic wave ( 5 )  may also be expressed in 
terms of an infinite sum of equally spaced indentical solitons (3), i.e. 

where 

y = (L /  .rr) tanh-I S k = 2S/tanh-‘ 6. (8) 
For infinitely long period L + m ,  equations (4), (6) and (8) yield y +  A, k + 2  and (7) 

The above identity (7) may be readily verified by considering the following contour 
reduces to Pp(5) + P A 5 ) .  

integral in the complex plane: 

I= f  1 d Z  
( 5 - 2 2 ~ ) ~ +  y 2  e x p ( 2 7 ~ i ~ ) - l  (9) 

where Z A [+ i y and C denotes a circle of radius R such that R = 121. For R + CO we 
have I = O( 1/R2) + 0 and the residue theorem implies that the sum of all residues of 
the integrand (9) lying within C is zero. Thus 

f ( 5 - 2 n ~ ) ~ +  1 
y 2  + 27Ti res( y) + 27Ti res( F) = 0 

and a straightforward computation of the contributions from the two residues in (10) 
finally results in (7) and (8). 

The same result (7) of course applies to the Lorentzian solitary wave solution (in 
addition to the ‘sech’ solution) of the modified Kdv equation found by Zabusky (1967), 
where it is still astonishing to find that solitary wave solutions of the non-linear DABO 

equation may be simply added together to give the periodic solution of the same 
equation. 
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